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Abstract

Medical Imaging Segmentation of Chest X-rays is
used for the purpose of identification and differen-
tiation of lung cancer, pneumonia, COVID-19, and
similar respiratory diseases. Widespread application of
computer-supported perception methods into the diag-
nostic pipeline has been demonstrated to increase prog-
nostic accuracy, and aid doctors in efficiently treating
patients. Modern models attempt the task of segmenta-
tion and classification separately, and improve diagnos-
tic efficiency; however, to further enhance this process,
this paper proposes a multi-output network which fol-
lows a U-Net architecture for image segmentation out-
put and features an additional CNN module for auxil-
iary classification output. The proposed model achieves
a final Jaccard Index of .9634 for image segmentation
and a final accuracy of .9600 for classification, on the
COVID-19 RADIOGRAPHY DATABASE.
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Introduction
Medical imaging is a vital and necessary tool for understand-
ing the structure of the human body in diagnosis, treatment,
research, and clinical contexts.[1, 9]. Historically, chest X-
ray has been the most commonly utilized radiological ex-
amination. In 2006, approximately 129 million chest x-rays
were obtained in the United States alone [13]. The high
demand can be attributed to the low cost, and widespread
availability of X-rays as compared to alternative imaging
tests, such as a diagnostic ultrasound, computed tomogra-
phy (CT), or magnetic resonance imaging (MRI) [5]. As
such, the chest x-ray is typically the first medical image cap-
tured, and remains vital in prognosis and treatment there-
after [15]. In order to accurately diagnose respiratory dis-
ease, lung segmentation of chest X-rays is necessary. Med-
ical imaging segmentation plays a critical role in analyzing
medical imaging through feature extraction, a process which
partitions an image by identifying homogeneous properties
[8]. A region may be divided by brightness, and texture in
the characteristics of adjacent pixels. Pixels in images take
values between 0-255 in greyscale. Radiologists perform
manual segmentation, a time-consuming and arduous task,
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which suffers from high-observer variability due to conflict-
ing interpretation[7, 2]. In lung segmentation, it is very diffi-
cult to identify small or subtle abnormalities, or to precisely
differentiate between pathological patterns of diseases [3].
Older chest x-ray images were sized 128 by 128, with mod-
ern imaging having significantly higher resolution. Even at
this relatively low resolution, (128 * 128 = 16,384 pixels)
it is considered high dimensional data for human eyes to
precisely observe. Differentiation of non-COVID viral pneu-
monia and COVID-19, is important for determining appro-
priate treatment [6]. The inherent difficulty in human in-
terpretation of chest X-ray analysis has led researchers to
pursue automated segmentation algorithms for this purpose.
Similarly, deep convolutional neural networks (CNN)[10]
have demonstrated effective image classification, image seg-
mentation, and semantic segmentation, a process of classi-
fying each individual pixel of an image[4, 18, 12]. Fully
Convolutional Networks (FCN)[12], a type of CNN, have
been used extensively in modern semantic segmentation al-
gorithms. In [16], the researchers advocate for U-Net, an
encoder-decoder network of FCN for biomedical image seg-
mentation. Since its introduction, the U-Net architecture has
demonstrated significant success, thus, recent studies have
focused on further developing and applying this architec-
ture rather than proposing new architectures and concepts
[14]. In the future, it is reasonable to predict that demand for
comprehensive medical image analysis may require simul-
taneous segmentation and classification to reduce doctor’s
workloads. This paper proposes a modification to the exist-
ing U-Net model which accomplishes the task of classifica-
tion and segmentation concurrently.

Proposed Methods
In recent years, the U-Net architecture [16] has been recog-
nized as one of the leading methods in medical image seg-
mentation. The U-Net architecture builds on the Fully Con-
volutional Network architecture, by implementing upsam-
pling operators in the contracting network, and symmetry in
the contracting and expansive paths. The name comes from
the U-shaped architecture represented by the contracting and
expansive paths. Upsampling operators increase the output
resolution to allow for precise segmentation. This paper pro-
poses to update “upsampling” with “Conv2DTranspose” ac-
tion. The symmetry within the model supports an overlap-
tile strategy, which allows the network to learn efficiently
even with little training data, a persistent issue in the field
of medical imaging. U-Net also supports multi-scale predic-
tion and deep supervision, as U-Net uses skip connection
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Figure 1: Diagram of proposed method. This is the executive diagram of the workflow for this paper.

across the model, more low-level features have presence in
the segmented output. U-Net was chosen both for the task of
lung segmentation, and for the ease of implementation in the
novelty of this model, an auxiliary classification output. The
innovation here is the integration of a CNN [10] to the latent
layer of the U-Net. It can be said that this model shows simi-
larity to the Siamese network architecture as both the U-Net
and CNN take advantage of the contracting path for feature
extraction. While the model only takes one input, it’s worth
mentioning that the model utilizes identical weights and bi-
ases to generate output. A traditional CNN is composed of
a similar feature extraction module, a classification module
and a probabilistic distribution to display output. The classi-
fication element of the multi-output approach might achieve
a potential benefit from backpropagation through the seg-
mentation element. The contracting path serves both the U-
Net and the CNN, similar to the concept of a siamese net-
work.

Proposed Architecture

The proposed network architecture is shown in figure 1.
Much like the standard U-Net model, the contracting path is
composed of multiple convolutional blocks each accompa-
nied by a 2x2 max pooling layer. Each successive layer has
stride 2 for downsampling, which doubles the number of fea-
ture channels. At the latent layer, the model splits into a max
pooling layer, a flatten layer, and 3 dense layers for classifi-

cation. All dense layers have ReLU activation function (1),
with the exception of the final dense layer. The nature of the
classification problem requires the final dense layer to be a
softmax activation function, as there are multiple classes. On
the expansive path of the U-Net model, following the princi-
ples of symmetry, an equal amount of convolutional blocks
accompanied by a 2x2 Conv2dTranspose layer, with stride
2, followed by a concatenate layer. The Conv2dTranspose
layer behaves similarly to an inverse convolutional layer
with a 2x2 stride. The layer has an upsampling effect while
interpreting the input data to assure detail. The concate-
nate layer combines the cropped feature map from the op-
posite convolutional block in the contracting path. This is
performed as edge pixel data is lost in the process. The fi-
nal layer is a 1x1 convolutional layer connect to the compo-
nent feature vectors to relevant classes. Each convolutional
block consists of two 3x3 unpadded convolutional layers,
two Batch Normalization layers, and two ReLU activation
layers for the contracting path, and two Leaky ReLU acti-
vation layers for the expansive path. Batch Normalization
is used in this model to further enhance model performance
by stabilizing the learning process through normalizing ac-
tivation vectors without compromising on training conver-
gence. The U-Net based multi-output architecture was real-
ized through the Tensorflow and Keras Python libraries.



Activation Functions
In order to improve the performance of the model, the effects
of several activation functions were compared, prompted by
the work of [19]. The authors investigated the differences in
performance of activation functions in image analysis. The
study concluded that in the task of medical image analysis,
there may be marginal improvement in results based on se-
lected activation function. In response to their findings, the
model was evaluated separately with each of these functions
in image segmentation. The activation functions were imple-
mented in the decoder block of the model.

ReLU(z) = max(z, 0) (1)

Leaky ReLU(z) = max(αz, z) (2)
where α is a tuning parameter.

ELU(z) = max(z, α(ez − 1)) (3)
The standard rectified linear unit (see equation 1) activa-

tion function takes an input and allows the information to
pass through if it is non-negative. Updated versions of ReLU
can also be used. Leaky rectified linear unit (see equation 2)
is one of its versions and it lets information passes through
with a scaling factor of α. Exponential linear unit (see equa-
tion 3) is another version of ReLU with exponential scal-
ing. ReLU is the predominant activation function for train-
ing deep and traditional neural networks. The ReLU activa-
tion function accelerates the training rate of deep and tra-
ditional neural networks compared to conventional activa-
tion functions as the derivative of ReLU is 1 for a positive
input. The network saves time for computing error metrics
in the process of training. As well as increasing computa-
tional efficiency, ReLU does not prompt the vanishing gra-
dient problem when the model increases layers. The vanish-
ing gradient problem occurs when the partial derivative of
the loss function approaches zero. In neural networks that
rely on backpropogation or gradient-based learning, the par-
tial gradient effects the weights propotionally to the value
of itself. A value approaching zero will become so insignif-
icant that the model may prevent the weight from changing
its value, stopping the model from training altogether. Hy-
berbolic tangent and sigmoid activation functions are known
to be susceptible to this problem as well. Leaky ReLU is a
modification of ReLU, producing small output values given
a negative input in comparison to a value of zero given by the
ReLU function in the same scenario. This modification pre-
vents the dying ReLU problem, where a neuron may learn
a large negative bias and continually output the same value.
This neuron is ’dead,’ and will now have no future effect on
the model, as it is improbable to learn when the function gra-
dient is at 0. The nonzero output value given a negative input
gives a ’dead’ neuron a chance to become active. The ELU
activation function is an identity function for non-negative
inputs, like ReLU. ELU differs from ReLU due to an α con-
stant which determines function smoothness for negative in-
puts. ELU does not suffer from the dying neuron problem
and the vanishing gradient problem, while generalizing bet-
ter. ELU tends to have a comparatively faster convergence

time than ReLU, though it is slower to compute due to the
non-linearity calculations necessary for negative inputs.

Figure 2: Comparative Activation Performance.

The model was trained on the COVID-19 Radiography
Dataset for 2000 epochs with differing activation functions
in the expansive path in order to reveal which activation
function produced superior performance. ELU, in this ex-
periment, had a slower convergence than ReLU and Leaky
ReLU, while ReLU and Leaky ReLU had similar conver-
gence speeds, at around 600 epochs. Final validation results
indicate that no model is significantly better or worse, with
Leaky ReLU outperforming both other activation functions
by a marginal amount.
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Figure 3: Confusion Matrix. This figure presents the con-
fusion matrix which is defined using true positive (TP), true
negative (TN), false negative (FN), and false positive (FP).
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The Intersection over Union (IoU) (Eq. 4), commonly
known as the Jaccard index, is the area of overlap between
the predicted segmentation divided by the area of union be-
tween the predicted segmentation and the ground truth. For
application in image segmentation, the mean IoU of the im-
age is calculated by taking the IoU of each class and averag-
ing them.

J (A,B) =
|A ∩B|
|A ∪B|

(4)

where A and B are two sets.
This metric represents the ratio between the model inter-

pretation of the lungs in comparison to the actual lungs in
a given input chest X-ray. The metric used to evaluate the
classification module of the model is accuracy, formally de-
fined (Eq. 5). Accuracy is formally defined as the number
of correct predictions over total predictions. The confusion
matrix is defined below where the prediction outcome can be
positive or negatives and the actual value is also positive or
negative. In the segmentation component, the mask is binary
and the binary values are treated as positive and negative, re-
spectively. In classification, if the model predicts the identity
of the image correctly, it is considered a true positive 3.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Training
The model was trained with 900 COVID-19 chest X-rays,
900 Viral-pneumonia X-rays, and 900 Normal chest X-rays.
Images were resized to (128 x 128), and 10% of the data was
used for model validation. Adam was chosen as the model
optimizer function. The model was trained on a batch size
of 60, with a maximum of 2,000 epochs, on a Tesla P100-
PCIE-16GB. The model tends to marginally improve, war-
ranting the large amount of training epochs. The model was

tested with 100 COVID-19 chest X-rays, 100 Pneumonia X-
rays, and 100 Normal chest X-rays.

Application
The COVID-19 Radiography Database, created by re-
searchers from Qatar University, Doha, Qatar, and the Uni-
versity of Dhaka, Bangladesh along with their collaborators
from Pakistan and Malaysia in collaboration with medical
doctors, was used for training, validation and testing. This
is a public dataset featuring 3616 COVID-19 positive cases
along with 10,192 Normal, and 1345 Viral Pneumonia im-
ages. All images are available in PNG format in 299 x 299
resolution. Lung segmentation masks are included with cor-
responding chest X-ray images. The segmentation masks
were manually generated by the researchers.

Figure 4: A Sample of Chest X-ray Data. The original data
is 299 by 299 and the resized image is 128 by 128.

COVID-19 Corresponding Mask

Results & Discussion

Table 1: Experimental Results. This table summarizes the
results of the experiment.

Activation Segmentation Classification
Decoder Jaccard Index Accuracy

ReLU 0.9521 0.9533
Leaky ReLU 0.9634 0.9600
ELU 0.9588 0.9467

[11] 0.9770 -
[17] - 0.9590

The concept of multi-output models in AI is far from new.
However, in the field of medical imaging, there does not yet
seem to exist a similar application of a multi-output concept.
Hence, there lacks appropriate candidates for comparison of
model performance. Of all the models tested, the implemen-
tation of Leaky ReLU (Table: 1) in the expansive path pro-
duced the best results by a small margin in both the classifi-
cation and segmentation tests. Change of activation function
did not significantly improve the model.

The U-Net module of the multi-output architecture dis-
plays satisfactory lung segmentation results. State-of-the-
art U-Net models[11] achieve similar Jaccard Index scores



Table 2: Comparison of time consumption for training.
Model Training Time for 100 epochs

U-net (alone) 11min 39sec
CNN (alone) 2min 37sec

Combined 14min 16sec

Proposed model 11min 44sec

(Table: 1) in the task of chest X-ray lung segmentation,
which provides ample support for the multi-output architec-
ture concept. The same can also be said for modern clas-
sification techniques. Findings from the researchers in [17]
also show similar testing accuracy scores (Table: 1) in lung
disease classification. These findings corroborate the clas-
sification module of the multi-output architecture concept.
The scores achieved in segmentation and classification can
be further improved. To justify use of the proposed network,
training times were of standalone CNN and U-Net mod-
els were added together and compared to the training time
of the proposed network (Table: 2). All models were tested
on the same hardware(see section: Training) with the same
dataset(COVID-19 Radiography). The multi-output archi-
tecture demonstrates better training times than the com-
bined training time of the CNN and U-Net model. The U-
Net model was made identically to the proposed network
(1), without the auxiliary classification output. These mea-
sures ensure that there are no extraneous variables which
may effect the outcome of net training time between mod-
els. A comprehensive multi-output network will train faster
than separate models which individually complete the same
tasks. While, the model does not surpass other established
models in medical imaging analysis, the proposed model
shows better training time and performance on par with
these models. At the moment, the exclusive function of
the classification module is to identify a disease through
lung segmentation of a given chest X-ray. In future work,
training on full-resolution images or additional classification
tasks can be implemented, such as severity grading of given
diseases. Different classification models such as AlexNet,
VGG16, or Google Inception could be implemented in a
similar way to an existing segmentation architecture for bet-
ter performance.

Conclusion
This paper has proposed a model architecture with con-
current image segmentation and classification output. The
model is based on U-Net and CNN architecture, with
Conv2dTranspose and Leaky ReLU to optimize the expan-
sive path. All convolutional blocks utilize batch normaliza-
tion. The proposed method achieves a Jaccard Index score
of 0.9634 and a accuracy score of 0.9600 on the COVID-
19 Radiography database for evaluating the segmentation
and classification modules, respectively. As proof of con-
cept, these findings are consistent with modern medical im-
age analysis models, while demonstrating improved model
training time. Though the concept of a concurrent segmen-

tation and classification architecture in medical imaging is
relatively new, there is still much work to be done. The appli-
cations of deep learning technology can be adapted to other
medical imaging techniques such as CT scan, MRI, diagnos-
tic ultrasound, and others. There is much potential to benefit
the field of medical image analysis by assisting human doc-
tors with AI-enhanced solutions.
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