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Introduction

Common and complex non-communicable diseases, such as neurodegenerative disorders,
cancers, and autoimmune diseases are pressing challenges facing modern-day healthcare.
Early detection of these diseases plays a pivotal role in their effective prognosis and prevention.
Up until the last decade, risk prediction for susceptibility towards certain diseases heavily relied
on traditional epidemiological measures in clinical settings, wherein factors such as lifestyle,
family history, and patient demographics, etc. were taken into account. However, these models
have proven to have limited predictive power and contained inaccuracies, because the other
half of the equation was missing.Unlike rare (monogenic) diseases that follow a clear Mendelian
pattern of inheritance as a result of the dysfunction of single genes, common diseases follow a
polygenic inheritance pathway which makes risk prediction more challenging. Since the
completion of the Human Genome Project, there has been an exponential increase in the
availability and efficiency of genome sequencing technology, as well as a significant decrease in
the cost per base pair sequencing (Ho et al.). As a result of the advancing technology with
reducing costs, the idea of using genetic variants (such as Single Nucleotide Polymorphisms)
for genome-based risk prediction has rapidly transformed the way researchers approach the
detection of diseases and has had a myriad of benefits on disease prevention. The use of
accurate risk prediction eliminates the need for expensive and invasive screening methods to
predict the onset of a disease.

Currently, the primary method of conducting genome-based risk prediction for polygenic
diseases has been polygenic risk scoring (PRS). A PRS measures the effect that genetic
variants associated with a trait affect an individual’s likelihood of developing it. The SNP
variation used to calculate polygenic risk scores is primarily derived from genome-wide
association studies (GWAS). Essentially, GWAS have successfully been able to map genetic
variants from disease-associated loci to specific polygenic disorders (Hirschhorn and Daly).
These associations are constructed by analyzing genetic variants that have a higher frequency
in individuals with the disorder (cases) than in the rest of the healthy population (controls)
(Cano-Gamez and Trynka). GWAS have played a pivotal role in understanding the underlying
molecular mechanisms behind complex diseases and have helped demystify the role that
genetic variation plays in causing disease.

Recently, machine learning methods have leveraged SNP data from GWAS to produce powerful
computational algorithms for accurate risk prediction (Cano-Gamez and Trynka). These
methods have the potential to statistically map SNP variation from genotypes to the onset of
complex disease phenotypes. Risk prediction as a classification problem involves the use of



SNP minor allele frequency as the input data (features) and the output as the diagnosis of the
specific disease (classification label). Supervised machine learning methods have shown
promise to change the face of risk prediction, while also giving us notable insight into the
polygenic architecture of common diseases faced by humans today.

One of these complex diseases that could greatly benefit from the intervention of machine
learning is Amyotrophic lateral sclerosis (ALS). ALS is a chronic neurodegenerative disorder
that affects around one in 50,000 people per year. It is characterized by a progressive loss of
muscle control, leading to speaking, eating, swallowing, and breathing difficulties (Heller).
Unfortunately, the etiology of ALS remains to be unknown and therefore there is no cure for this
fatal disease (Heller). However, supervised machine learning shows great promise to be able to
predict an early diagnosis of ALS based on SNPs that an individual may possess (Genet). The
use of machine learning would pose a myriad of benefits for patients who could potentially
develop the chronic disease, and it would also give us essential insights into the molecular
mechanisms behind ALS as well as potential therapeutics that could improve the quality of life
for these individuals.

Previous work

Recently, supervised machine learning approaches have emerged as powerful tools for
genome-based risk prediction for various different common diseases such as cardiovascular
disease, Alzheimer’s disease, cancers, and type 2 diabetes. While the use of SNPs for risk
prediction is still a relatively new area, previous literature has shown that several genome-based
risk prediction algorithms have been more successful than standard PRS.

In a recent study, Gaudillo et al. were able to achieve an area under the receiver operator
characteristic curve (AUC) score of 0.62 for asthma risk prediction using an integrated Random
Forest and SVM model, and a score of 0.62 for an integrated Random Forest and k-nearest
neighbors model (Gaudillo et al.). SNP data has also been used to investigate whether
steroid-metabolism gene SNPs would cause breast cancer due to an increase of hormones and
environmental toxins. Dumitrescu and Cotarla were able to find an optimal model by testing
whether SVM, Naive Bayes, or decision tree classifiers worked best on the data, and by
reducing their sample size from 98 SNPs to 2-3 SNPs. The SVM classifier was able to achieve
the highest accuracy of 69% (Dumitrescu and Cotarla). These studies highlight how machine
learning approaches for genome-based risk prediction have promising potential to be clinically
useful and give researchers insight into the molecular mechanisms that lead to disease.

In the case of ALS, Gupta et al. have utilized machine learning for risk prediction by measuring
epidemiological factors such as patient environment and family history (Gupta et al.). However,
this study did not use SNP data as one of the variables, which is a key factor that could perhaps
play a role in how susceptible an individual is to developing ALS. Currently, there have been no
machine learning methods for ALS risk prediction informed by SNP data, which elucidates the
need for this investigation, as it could potentially add another dimension to the risk prediction of
ALS. Through this investigation, we aim to explore how supervised learning methods can be



used to predict the diagnosis of ALS based on single nucleotide polymorphism minor allele
counts.

Methods

Data acquisition and cleaning

The dataset chosen for this project was genomics and clinical data from the End ALS Kaggle
Challenge (“End ALS Kaggle Challenge”). The genomics data consists of SNP information
along with header information such as the variant chromosome, the variant position within the
chromosome, the variant ID (rsID from dbSNP), as well as the reference and alternate allele
bases from 134 people with ALS or motor neuron disease, and a control population of 30 people
without the diseases. All of the variants listed in the dataset are also filtered through the GATK
VQSR quality control, eliminating variants that are present in intergenic regions and have a
frequency higher than 10%. The variants are also coded in binary data, in which patient
genotypes that only have the reference allele are labeled as 0, whereas the genotypes with one
or both copies of the alternate allele are labeled as 1.

Additionally, the second dataset used for the project was an ALS GWAS summary statistics
dataset acquired from Project MinE (Genet). This dataset contains cross-ancestry GWAS data
from 29,612 ALS patients (cases) and 122,656 healthy individuals (controls). The summary
statistics contain information on the chromosome number, SNP rsID, alternate and reference
allele bases, frequency, as well as the p-value for each SNP. The p-value is the probability that
the specific SNP is associated with the disease of interest. In this case, SNPs with a lower
p-value are statistically more associated with developing ALS.

We then pre-processed and analyzed for machine learning, primarily using built-in Python
libraries such as Pandas, and numPy. The first step in this process was to align the genomics
data frame containing SNP data corresponding to each participant ID to the clinical data frame
containing the participant IDs that aligned to whether the patient was a case (with ALS) ‘1’ or
control (healthy) ‘0’. We then sorted the SNPs from the summary statistic dataset in order of
ascending p-values, and the top 100 SNPs that were present in the summary statistics as well
as the genomics data frame were chosen as the features for the machine learning model. The
labels for the machine learning model were from the clinical data frame, wherein a predicted
case of ALS would result in “1’, and the absence of ALS would correspond to a value of ‘0’.

Machine learning models

The supervised machine learning models applied to the data were logistic regression, random
forest, and Naive Bayes using the Python library Scikit-learn (scikit-learn). The initial goal of the
project was to establish benchmark models using default parameters. We then aimed to make
improvements to the model by experimenting with class balance, optimization of
hyperparameters, and regularization techniques.

Logistic Regression


https://www.kaggle.com/alsgroup/end-als
https://www.kaggle.com/alsgroup/end-als
https://www.projectmine.com/research/download-data/

Logistic regression is a supervised classification algorithm used to produce discrete outcomes in
a binary manner when given input variables (Edgar and Manz). In this case, the input variables
(or features) are the top SNPs and the output variable is the diagnosis of ALS (0 or 1). The
model learns the relationship between the variables from the labeled dataset in the form of a
sigmoid function. The advantage of using logistic regression as the baseline model is that it is
relatively easy to implement, train and interpret. Additionally, it has the ability to produce a
measure of the direction of association between the independent and dependant variables,
which in this case is whether the SNPs have a positive or negative effect on the predicted
diagnosis of ALS. However, an important drawback of logistic regression is that it is highly
susceptible to overfitting in high-dimensional datasets (Rout). Because logistic regression is a
model that tends to overfit data, it is essential that different regularization techniques are used to
combat the likelihood of overfitting to improve the model performance. Another drawback of
using logistic regression on this dataset is that the model assumes the absence of
multicollinearity between the features (Stoltzfus). However, due to linkage disequilibrium, many
SNPs that are analyzed through GWAS are often highly correlated with one another. Linkage
disequilibrium occurs when there is a correlation between nearby SNPs at different loci on the
same chromosome. Variants are in linkage disequilibrium when the frequency of association is
higher than if they were unlinked or associated randomly (Slatkin).

Random Forest

Random forest is another supervised classification algorithm that is constructed from multiple
decision trees. The algorithm establishes the outcome based on the predictions made by
individual decision trees, and makes predictions by calculating the mean of the outputs from the
decision trees. The decision trees represent separate and distinct classification instances of the
inputted data, and the random forest selects predictions based on the majority of votes
(“Random Forest - Overview, Modeling Predictions, Advantages”). The primary advantage of
random forest is that it performs well on high-dimensional data with numerous features, which is
a feature that is highly beneficial for this dataset. Additionally, random forest can also balance
any imbalanced classes automatically, which is why it is suitable to use on the imbalanced
dataset used in this investigation.

Naive Bayes

Naive Bayes is a probabilistic classification algorithm based on Bayes theorem, and carries a
strong assumption of independence between predictor variables. Essentially, Naive Bayes
works on the concept that each predictor variable has an equal and independent contribution to
the final outcome (Rish). While this assumption is beneficial for allowing the model to perform
well on less training data such as the dataset used in this investigation, the independence
between features negates the additive effects and interactions between each SNP that may
further contribute to the development of ALS. As mentioned previously, it is likely that most
SNPs will be correlated with each other due to linkage disequilibrium but Naive Bayes assumes
that the associations between each SNP do not exist, which in theory would have an effect on
the performance of the model. However, studies have shown that in practice, the independence



assumption that Naive Bayes makes allows it to compete with other sophisticated classifiers
(Rish).

Model training

For each model, we split the dataset into training and testing sets, using an 80:20 ratio. This
meant that 80% of the data was assigned to training the model during the development stage,
whereas 20% was allocated to the testing set where the trained models were used to make
predictions on the unseen data. This was to ensure that the models were able to generalize the
learned relationship to new data from the test set. After the splitting of the datasets using
Scikit-learn, each classification model was imported, initialized, and fitted to the training data
without tuning any hyperparameters to benchmark the baseline models. The trained models
were then used to make predictions on the test set and evaluated based on performance.

Evaluating baseline performance

The performance of the baseline models was evaluated using accuracy as well as the area
under the receiver operating characteristics curve (AUROC). Accuracy is a commonly used
metric to evaluate performance. Accuracy is calculated by comparing the number of correctly
predicted samples to the total number of samples, and follows a scale of 0 (absence of correct
predictions) to 1 (every prediction is correct) (Zvornicanin). However, because the dataset is
highly imbalanced, accuracy can be a misleading measure of performance. AUROC is another
commonly used metric when dealing with data that contains class imbalance as it uses
prediction probabilities (“Measuring Performance: AUC (AUROC)”). The receiver operating
characteristics curve (ROC) essentially outlines the relationship between true positive rate and
false-positive rate for different probability thresholds. AUROC is used to measure the model’s
ability to discriminate between positive and negative cases, and follows a scale of 0 (absence of
correct predictions) to 1 (all predictions are correct). An AUROC value of 0.5 indicates that the
model is either predicting random or constant class points (Zvornicanin). Additionally, the area
under the precision-recall curve (AUPR) is another performance metric similar to AUROC, but it
is used on highly imbalanced datasets as it focuses on the fraction of true positives in the
positive classes rather than the negative classes (Saito and Rehmsmeier). The AUPR is also
the average of the precision scores which is calculated at different thresholds.

Initial results
Baseline models

We trained baseline models with default parameters using random forest, logistic regression,
and Naive Bayes. The AUROC performances for the baseline random forest, logistic regression,
and naive Bayes models were 0.49, 0.43, and 0.48 respectively. These results show that the
baseline models performed worse than random, and therefore need to be improved using
various methods in order to be useful in a clinical setting.

Dealing with imbalanced classes



The first improvement we made to the models was balancing the class weights within the
training dataset. This was an essential step because the dataset used is highly imbalanced, as
the case genotypes (134 individuals) are significantly larger and overrepresented than the
control genotypes (10 individuals). This is an important issue because it is likely that the
machine learning models were able to predict and be biased towards the over-represented
positive instances (ALS diagnosis) rather than the scarce negative instances (absence of ALS).
This issue can potentially be combatted through different approaches, however, the most
feasible one (considering the size of the dataset) was through balancing the class weights
(Singh).

To solve this challenge, more weight can be given to the minority class (without ALS) so that the
algorithm focuses on reducing the errors within the minority class, without letting it become
biased towards this class instead. A built-in parameter within Scikit-learn was used to balance
the classes, by automatically assigning class weights that are inversely proportional to the
frequency of each class (Singh). Although this process helps optimize the class imbalance
problem, the drawback is that it increases true recall at the cost of decreasing true precision
(“Using Class Weight to Improve Class Imbalance”).

Optimization of hyperparameters

The next improvement made to the models was optimizing the parameters to improve model
performance. For each model, a different set of hyperparameters were tuned both manually, as
well as using a grid and random search. A grid search is conducted by defining a grid of
hyperparameters and evaluating every position in the grid using cross-validation. The most
optimal parameters from the grid search are defined as the point of the grid that maximizes the
performance in cross-validation. On the other hand, random search only tests a subset of the
points on the grid rather than the entire grid to find the best hyperparameters. For example, a
grid search on the Naive Bayes model showed that by tuning the var_smoothing
hyperparameter, the testing AUROC value of the model increased from 0.710 to 0.843, which
was an 18.3% increase in performance.

Additionally, it is important to consider the overfitting of the models to the training data. All three
models originally presented a high training AUROC value of 1.0, whereas the testing AUROC
values were significantly lower. The disparity between training and testing AUROC values was
likely a result of overfitting, wherein the models tend to memorize the training data instead of
learning the relationship between the variables, resulting in poor performance on unseen data
(Ying). To combat overfitting, C, L1, and elastic-net regularization techniques were used to try to
overcome the challenge of the overfit models. For example, the grid search on the logistic
regression model showed that a C value of 1 x 10"9 was benéeficial in increasing the testing
AUROC value from 0.43 to 0.56.

Feature importances

We calculated the importance of the features for each model in order to compare them to the
p-value for each SNP. For logistic regression, this process involved examining the model



coefficients. As mentioned earlier, the advantage of logistic regression is that it stores the
coefficients assigned to each feature as well as the direction of the effect, demonstrated through
the positive and negative coefficients associated with each feature (“Scikit-Learn 0.21.2
Documentation”). When the feature importances were calculated for each model, we found that
the feature importances did not correspond to the p-value of the association between each SNP
and the disease. The high feature importance could perhaps be attributed to the interactions
between the SNPs rather than singular SNPs having a large effect on developing the disease.

Final results

After improving the baseline models through optimization of hyperparameters, using
regularization techniques, and balancing class weights, we trained the final random forest,
Naive Bayes, and logistic regression models. We evaluated the performance of these models
using metrics such as training and testing AUROC, accuracy, and AUPR as shown in table 1.
The results illustrate that while the random forest classifier and logistic regression had training
AUROC scores of 1.0, Naive Bayes had the highest testing AUROC of 0.843. The highest
accuracy of 83% also belonged to Naive Bayes, followed by random forest with an accuracy
score of 80%, and logistic regression with the lowest accuracy of 74%. Figure 1 outlines the
comparison between AUROC, accuracy, and AUPR of each model.

Table 1. Summary of model performances of random forest, Naive Bayes, and logistic
regression classifiers. The metrics we used to evaluate performance include training and
testing AUROC, accuracy, and AUPR.

Supervised machine Training Testing AUROC | Accuracy AUPR
learning classifier AUROC

Random Forest (RF) 1.000 0.640 80% 0.87
Gaussian Naive Bayes 0.985 0.843 83% 0.94
(NB)

Logistic Regression (LR) | 1.000 0.653 74% 0.89




Figure 1. Comparison of final model performances of random forest, Naive Bayes, and
logistic regression classifiers.
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Additionally, Table 2 and Figure 2 highlight the comparison between the AUROC score of the
baseline models and the AUROC score of the final models. The results show that after the
improvements to the models were made through regularization, dealing with the class
imbalance and hyperparameter optimization,

Table 2. Summary of baseline model AUROC performance and final model AUROC

performance

Supervised machine
learning classifier

Baseline testing AUROC

Final testing AUROC

Random Forest (RF) 0.49 0.64
Gaussian Naive Bayes

(NB) 0.48 0.84
Logistic Regression (LR) 0.43 0.65




Figure 2. Comparison between baseline model AUROC performance and final model
AUROC performance
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As shown in figure 2, the Naive Bayes classifier outperformed random forest and logistic
regression based on final testing AUROC, and also demonstrated the greatest increase in
performance from an AUROC score of 0.48 to 0.84. Therefore, the Naive Bayes classifier has
shown to be the most optimal classifier for this dataset, followed by logistic regression and
random forest.

Discussion

This investigation demonstrates how supervised machine learning can be used as a powerful
tool for SNP- based risk prediction for ALS. As highlighted earlier, ALS is a fatal disease that
could greatly benefit from the intervention of machine learning for risk prediction, and therefore,
early detection. Currently, ALS is most commonly diagnosed after individuals have already
suffered irreversible damage to motor neurons present within the central nervous system.
Studies have shown that the early detection of ALS could not only delay and slow down the
disease progression, but also has the potential to even prevent extensive neuron loss as a
result of the disease (“New Program Hopes to Make Early Detection and Treatment of ALS a
Reality”).

However, the results from this investigation pose certain limitations on the scope of our models,
and whether they can be potentially beneficial in clinical settings. Although the highest accuracy
score from our analysis was 83% for the final Naive Bayes model, it is important to consider that



a large margin of error can be particularly detrimental in clinical settings. For example, in the
case of false-negative results, individuals would be unaware that they are susceptible to a
particular disease based on their genetic variation and may not take any preventative measures
and eventually develop the disease. In this case, one could argue that a false-negative result is
more dangerous than a false-positive result because extraneous factors such as environment
and family history also play an important role in whether an individual develops a disease or not,
and therefore it is best to take preventive measures either way. Because of this, it is critical to
emphasize the idea that risk-prediction models should not be used as diagnostic tools, but
should instead be used to aid medical systems and doctors for early detection and to take
preventative measures for patients at risk of developing diseases.

In the future, it is important that we harness the prospect of machine learning not only for ALS
risk prediction, but also to gain insights into the polygenic architecture and molecular
mechanisms behind ALS, such as the additive effects and epistatic interactions between SNPs
that may affect the likelihood of developing the disease. Though this is beyond the scope of this
paper, SNP data from GWAS combined with machine learning approaches can also be used to
analyze individual responses to potential therapeutics that could improve the quality of life for
these ALS patients.

This investigation highlights the potential of supervised machine learning approaches to SNP-
based risk prediction. However, due to the scarcity and imbalance within the dataset used to
train our models, future work would require larger, unbiased, and more robust data to accurately
assess the role of machine learning techniques for ALS risk prediction. In conclusion, the use of
machine learning to inform the process of the early detection of ALS in clinical settings can pose
countless benefits for individuals who are predisposed to developing the disease, and could
potentially save thousands of lives.
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